Verilog

Coding Style Guide

CS-173 Fundamentals of Digital Systems

Mirjana Stojilovic
2024

FUNDAMENTALﬂS))

D IGITAL

SYSTEMS

https://mirjanastojilovic.github.io/cs173/index.html

Readability Matters

= Have a well-formatted code
* Indent properly and consistently W
* Insert empty lines to give structure and help readability

« Add comments if the functionality is not obvious
« Use one-line comments, starting with // .
* Write no more than one Verilog statement per line

e

= Choose names carefully for your modules, ports,
signals, etc., to facilitate code understanding

= Choose a naming convention and apply it consistently

Style Guidelines

= Many style guides exist
» Example style guide: link

Verilog HDL Coding

Semiconductor Reuse Standard

IPMXDSRSHDLO0O1
SRS V3.2

freescale

semiconductor

https://people.ece.cornell.edu/land/courses/ece5760/Verilog/FreescaleVerilog.pdf

Instantiating Modules as Subcircuits

= Connect ports by name in module instantiations
* Do not connect ports by position

« Connecting by name improves readability and adaptability

* |t causes fewer errors if, for instance, you decide to update
the list of ports of your module in the future

= |_ogic expressions are not allowed in port connections
« Concatenations and constants are allowed

Unused Module Inputs and Outputs

= Drive all unused module inputs by some other signals

or by a fixed logic zero or one W\

= All unused module instance outputs should : \
be connected to a "dummy” wire declaration that, .
for readability, indicates no connect (or open)
N Its name

Declare Internal Nets

= Internal nets must be declared explicitly, not implicitly

» Port nets do not need to be redeclared in wire W\

declarations in addition to the input/output/inout
declarations

= Group all internal net declarations (wire, reg) together .
INn one section following the input/output/inout
declarations at the top of the module

Blocking and Nonblocking Assignments

In Verilog

= Recall that the logic symbol for an FF |
has a little wedge on the clock input; —D QH ‘

have that remind you to use <= operator 1 gl

= Use blocking (=) assignments in combinational always blocks

= Use nonblocking (<=) assignments in edge-sensitive sequential
code blocks. Blocking assignments (=) are not allowed

= Latches must be written with nonblocking assignments

CS-173, © EPFL, Spring 2024 7/

always@(*) Blocks

In Verilog

= Most often used to describe combinational logic

= Use * for the sensitivity list of the combinational circuit

« Because you want your outputs to react to a change
of any of the inputs

« Use always@(*) block when wanting to infer
elements that change value as soon as one or more
of the inputs change

CS-173, © EPFL, Spring 2024

always@(posedge Clock) Blocks

In Verilog

= Used to describe sequential logic containing flip-flops

= For clock signal named Clock
* always@(posedge Clock)
* active clock edge of the FF is the rising clock edge
* always@(negedge Clock) »
* active clock edge of the FF is the falling clock edge .

CS-173, © EPFL, Spring 2024

Avoid Latches

= For practical sequential systems, avoid latches
« Latches are sensitive to glitches (hazards)
 Latch outputs can oscillate

« Latches are level (not edge!) sensitive and may change
output many times during one clock period

= Use only D flip-flops and combinational logic

* Write independent always blocks
« Some dedicated to D flip-flops (keep them extremely simple)
« Some dedicated to combinational logic (as complex as needed)

CS-173, © EPFL, Spring 2024

Specify Combinational Logic Completely

= To avoid latches to sneak into your combinational
circuits, make sure to assign a value to the nets M
for all input combinations

= Recommended practice:

e Start your always@(*) block with the initialization
of all nets to some default logic values, so they all take
a value (1 or 0) regardless of the code that follows;
this initialization section ensures your circuit has no latches

 After the initialization section, proceed to describe
the combinational circuit functionality

\
|

FSM Modeling

» To describe an FSM in Verilog, use three always blocks
« one combinational, for next-state logic M
* one sequential, for the state memory (FFs)

« one combinational, for the output logic

\
|

= \When modeling the state memory, pay attention to
« active clock edge: rising (posedge) or falling (negedge)
» reset: asynchronous or synchronous, active high or low

= \Whenever possible, give names to FSM states
and declare them as Verilog parameters

Mealy FSM Modeling

In Verilog

Next-State Logic State memory Output Logic
(Combinational) (Sequential) (Combinational)
X IngELS always @ (*) always @(posedge CLK) always @ (*) |
| begin Snext pegin S begin Outputs .
Snext = .. S <= Snext; Z = .. :
end end end
—
Clock ;
e MEALY FSM !

CS-173, © EPFL, Spring 2024

Note: Adjust the sensitivity list of the state memory, as required -

Moore FSM Modeling

In Verilog

Next-State Logic State memory Output Logic
; (Combinational) (Sequential) (Combinational)
X Input_s always @ (*) always @(posedge CLK) always @ (*) |
5 begin Snext pegin S begin Outputs .
Snext = S <= Snext; Z = .. :
end end end
—
Clock ;
e MOORE FSM

Note: Adjust the sensitivity list of the state memory, as required

