
Verilog
Coding Style Guide

CS-173 Fundamentals of Digital Systems

Mirjana Stojilović

2024

https://mirjanastojilovic.github.io/cs173/index.html

2

Readability Matters

CS-173, © EPFL, Spring 2024

▪ Have a well-formatted code
• Indent properly and consistently

• Insert empty lines to give structure and help readability

• Add comments if the functionality is not obvious

• Use one-line comments, starting with //

• Write no more than one Verilog statement per line

▪ Choose names carefully for your modules, ports,
signals, etc., to facilitate code understanding

▪ Choose a naming convention and apply it consistently

3

Style Guidelines

▪ Many style guides exist

▪ Example style guide: link

CS-173, © EPFL, Spring 2024

https://people.ece.cornell.edu/land/courses/ece5760/Verilog/FreescaleVerilog.pdf

4

Instantiating Modules as Subcircuits

▪ Connect ports by name in module instantiations
• Do not connect ports by position

• Connecting by name improves readability and adaptability
• It causes fewer errors if, for instance, you decide to update

the list of ports of your module in the future

▪ Logic expressions are not allowed in port connections
• Concatenations and constants are allowed

CS-173, © EPFL, Spring 2024

5

Unused Module Inputs and Outputs

▪ Drive all unused module inputs by some other signals
or by a fixed logic zero or one

▪ All unused module instance outputs should
be connected to a “dummy” wire declaration that,
for readability, indicates no connect (or open)
in its name

CS-173, © EPFL, Spring 2024

6

Declare Internal Nets

▪ Internal nets must be declared explicitly, not implicitly

▪ Port nets do not need to be redeclared in wire
declarations in addition to the input/output/inout
declarations

▪ Group all internal net declarations (wire, reg) together
in one section following the input/output/inout
declarations at the top of the module

CS-173, © EPFL, Spring 2024

7

Blocking and Nonblocking Assignments
In Verilog

▪ Use blocking (=) assignments in combinational always blocks

▪ Use nonblocking (<=) assignments in edge-sensitive sequential
code blocks. Blocking assignments (=) are not allowed

▪ Recall that the logic symbol for an FF
has a little wedge on the clock input;
have that remind you to use <= operator

▪ Latches must be written with nonblocking assignments

CS-173, © EPFL, Spring 2024

8

always@(*) Blocks
In Verilog

▪ Most often used to describe combinational logic

▪ Use * for the sensitivity list of the combinational circuit
• Because you want your outputs to react to a change

of any of the inputs

• Use always@(*) block when wanting to infer
elements that change value as soon as one or more
of the inputs change

CS-173, © EPFL, Spring 2024

9

always@(posedge Clock) Blocks
In Verilog

▪ Used to describe sequential logic containing flip-flops

▪ For clock signal named Clock
• always@(posedge Clock)

• active clock edge of the FF is the rising clock edge

• always@(negedge Clock)

• active clock edge of the FF is the falling clock edge

CS-173, © EPFL, Spring 2024

10

Avoid Latches

▪ For practical sequential systems, avoid latches
• Latches are sensitive to glitches (hazards)

• Latch outputs can oscillate

• Latches are level (not edge!) sensitive and may change
output many times during one clock period

▪ Use only D flip-flops and combinational logic
• Write independent always blocks

• Some dedicated to D flip-flops (keep them extremely simple)

• Some dedicated to combinational logic (as complex as needed)

CS-173, © EPFL, Spring 2024

11

Specify Combinational Logic Completely

▪ To avoid latches to sneak into your combinational
circuits, make sure to assign a value to the nets
for all input combinations

▪ Recommended practice:
• Start your always@(*) block with the initialization

of all nets to some default logic values, so they all take
a value (1 or 0) regardless of the code that follows;
this initialization section ensures your circuit has no latches

• After the initialization section, proceed to describe
the combinational circuit functionality

CS-173, © EPFL, Spring 2024

12

FSM Modeling

▪ To describe an FSM in Verilog, use three always blocks

• one combinational, for next-state logic

• one sequential, for the state memory (FFs)

• one combinational, for the output logic

▪ When modeling the state memory, pay attention to
• active clock edge: rising (posedge) or falling (negedge)

• reset: asynchronous or synchronous, active high or low

▪ Whenever possible, give names to FSM states
and declare them as Verilog parameters

CS-173, © EPFL, Spring 2024

13

Mealy FSM Modeling
In Verilog

CS-173, © EPFL, Spring 2024

always @ (*)
begin
Snext = …
end

always @(posedge CLK)
begin
S <= Snext;

end

always @ (*)
begin
Z = …

end

X

Clock
MEALY FSM

Snext OutputsS

Next-State Logic
(Combinational)

State memory
(Sequential)

Output Logic
(Combinational)

Inputs

Z

Note: Adjust the sensitivity list of the state memory, as required

14

Moore FSM Modeling
In Verilog

CS-173, © EPFL, Spring 2024

always @ (*)
begin
Snext = …
end

always @(posedge CLK)
begin
S <= Snext;

end

always @ (*)
begin
Z = …

end

X

Clock
MOORE FSM

Snext OutputsS

Next-State Logic
(Combinational)

State memory
(Sequential)

Output Logic
(Combinational)

Inputs

Z

Note: Adjust the sensitivity list of the state memory, as required

